
j. differential geometry

61 (2002) 195-225

MINIMAL VOLUME ALEXANDROV SPACES

PETER A. STORM

Abstract
Closed hyperbolic manifolds are proven to minimize volume over all Alexan-
drov spaces with curvature bounded below by −1 in the same bilipschitz
class. As a corollary compact convex cores with totally geodesic boundary
are proven to minimize volume over all hyperbolic manifolds in the same
bilipschitz class. Also, closed hyperbolic manifolds minimize volume over
all hyperbolic cone-manifolds in the same bilipschitz class with cone angles
≤ 2π. The proof uses techniques developed by Besson-Courtois-Gallot. In 3
dimensions, this result provides a partial solution to a conjecture in Kleinian
groups concerning acylindrical manifolds.

1. Introduction

To state this paper’s main result, let N be a compact irreducible
acylindrical 3-manifold which admits a convex cocompact hyperbolic
metric on its interior. Then by Thurston’s Geometrization and Mostow
Rigidity there exists a convex cocompact hyperbolic manifoldM0 home-
omorphic to int(N) such that the convex core CM0 has totally geodesic
boundary [25, p. 14]. Here we prove:

Theorem 5.9. With the above notation, let M be any hyperbolic
manifold homotopy equivalent to N . Then

Vol(CM ) ≥ Vol(CM0).

This theorem is related to a conjecture in Kleinian groups made by
Bonahon (see also [9]). To state things precisely, let I(N) denote the
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set of isometry classes of hyperbolic 3-manifolds homotopy equivalent
to N , and define a volume function Vol :M ∈ I(N) �−→ Vol(CM ). The
conjecture states M0 is the unique global minimum of Vol over I(N).
This paper provesM0 is a global minimum of Vol. Previous progress on
this conjecture was made by Bonahon [5]. Using different techniques,
and in a slightly more general setting, Bonahon proved M0 is a strict
local minimum of Vol.

The above theorem is proven by extending a minimal volume re-
sult of Besson-Courtois-Gallot [3] to Alexandrov spaces with curvature
bounded below by −1.

Theorem 4.4. Let X be an Alexandrov space with curvature
bounded below by −1, and Mhyp a closed hyperbolic manifold. If X
and Mhyp are bilipschitz, then

Vol(X) ≥ Vol(Mhyp).

Theorem 4.4 is used to study the invariant

V(N) := inf
M∈cctop(N)

{volume of the convex core CM of M},

where cctop(N) is the set of isometry classes of complete convex co-
compact hyperbolic manifolds diffeomorphic to the interior of a smooth
compact n-manifold N . Using the main theorem we prove:

Theorem 5.1. Let N be a smooth n-manifold. If there exists an
M0 ∈ cctop(N) such that ∂CM0 ⊂M0 is a totally geodesic submanifold,
then

V(N) = Vol(CM0).

As an immediate corollary, the Gromov norm of the doubled mani-
fold DN is related to V by the formula ‖[DN ]‖vn = 2V(N) (where vn
is the volume of a regular ideal simplex in H

n). Applying Theorem 5.1
to 3-manifolds yields Theorem 5.9, which is stated above.

Theorem 4.4 also proves two corollaries concerning cone-manifolds.

Theorem 6.2. Let X be an n-dimensional cone-manifold with all
cone angles ≤ 2π and sectional curvatures K ≥ −1 on smooth points.
Let Mhyp be a closed hyperbolic n-manifold. If X and Mhyp are bilips-
chitz then Vol(X) ≥ Vol(Mhyp).
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In the case when n = 3, applying the Manifold Hauptvermutung
yields the stronger statement:

Corollary 6.3. Let X be a 3-dimensional cone-manifold with all
cone angles ≤ 2π and sectional curvatures K ≥ −1 on smooth points.
Let Mhyp be a closed hyperbolic 3-manifold. If X and Mhyp are homeo-
morphic then Vol(X) ≥ Vol(Mhyp).

These inequalities do not follow from the Schläfli formula for polyhe-
dra [10, p. 71]. Applying the Schläfli formula requires a one-parameter
family of cone-manifolds connecting X toMhyp. Such a family does not
exist in general (see the end of Section 6).

The author would like to thank his advisor, Richard Canary, for
his absolutely essential assistance. From asking the initial question to
editing the incorrect drafts, his advice was crucial at every stage of this
research. The author thanks Ian Agol for pointing out the application of
Theorem 4.4 to cone-manifolds. Finally, the author thanks the referee
for his excellent comments.

1.1 Sketch of proof

The powerful tool used here is a computation of spherical volume by
Besson-Courtois-Gallot. Let Y be a compact manifold with universal
cover Ỹ . Philosophically, the spherical volume of Y is the minimal
n-dimensional Hausdorff measure of “embeddings” Y −→ L2(Ỹ ). (Ob-
viously this is not the actual definition, but it captures the idea.) In
[3], Besson-Courtois-Gallot proved the spherical volume of a closed hy-
perbolic manifold is a dimensional constant times its volume. Let X
be a compact Alexandrov metric space with curvature bounded below
by −1. (e.g., X is a cone-manifold or DCM .) Generalizing a theorem
of [3], we prove the spherical volume of X is not greater than a di-
mensional constant times Vol(X). We then prove spherical volume is a
bilipschitz invariant. If X is bilipschitz to a closed hyperbolic manifold
Mhyp, then these fact prove the inequality of Theorem 4.4, namely that
Vol(X) ≥ Vol(Mhyp).

To use this inequality to study convex cores CM , we must first change
CM into a closed manifold. This is accomplished by simply doubling
CM across its boundary to obtain closed topological manifold DCM .
(For technical reasons, a neighborhood of CM is doubled, but this is a
detail.) Second, CM is proven to be an Alexandrov space with curvature
bounded below by −1. Next, we use the assumption that there exists
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M0 ∈ cctop(N) such that ∂CM0 has totally geodesic boundary. This
assumption is used to find a bilipschitz map DCM −→ DCM0 . DCM0 is
a closed hyperbolic manifold. Therefore, Theorem 4.4 can be applied,
yielding Theorem 5.1.

Obtaining the inequality for cone-manifolds is simpler. It was proven
in [8] that cone-manifolds with cone angles ≤ 2π are Alexandrov spaces.
In Theorem 6.2, we assume a bilipschitz map to a closed hyperbolic
manifold exists. The desired volume inequality then follows immediately
from Theorem 4.4. For 3-dimensional cone-manifolds, hard classical
topology can be employed to promote a homeomorphism to a bilipschitz
map basically for free, yielding Corollary 6.3.

2. Preliminaries

The following is a review of the necessary definitions.

2.1 Convex core

Let M be a complete hyperbolic manifold. Let S ⊆M be the union of
all closed geodesics in M . The convex core, CM , is the smallest closed
convex subset of M which contains S, in other words it is the closed
convex hull of S in M . The convex core may also be defined as the
smallest closed convex subset of M such that the inclusion map is a
homotopy equivalence.

For finite volume hyperbolic manifolds, the convex core is the entire
manifold. Thus this is a useful object only in the infinite volume case,
where CM is the smallest submanifold which carries all the geometry of
M .

2.2 Convex cocompact

A complete hyperbolic manifold M is convex cocompact if CM is com-
pact. These are the best behaved infinite volume hyperbolic spaces.
There is a natural deformation space associated with convex cocompact
manifolds. Fix a compact smooth manifold N (usually with boundary).
Define cctop(N) to be the set of isometry classes of complete convex
cocompact hyperbolic manifolds M diffeomorphic to the interior of N .

For 3-manifolds, the work of Thurston yields precise topological con-
ditions on N which imply cctop(N) is nonempty. Specifically, cctop(N) is
nonempty if and only if N is a compact irreducible atoroidal 3-manifold
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such that ∂N is a nonempty collection of surfaces with negative Euler
characteristic [16].

2.3 Acylindrical

Define A := S1 × [0, 1] to be a closed annulus. A boundary preserving
map f : (A, ∂A) −→ (N, ∂N) is essential if f is π1-injective and f is
not homotopic rel boundary to a map g : A −→ ∂N . N is acylindrical
if ∂N is incompressible and there does not exist an essential map f :
(A, ∂A) −→ (N, ∂N).

2.4 Alexandrov spaces

Let Y be a complete locally compact geodesic metric space of finite
Hausdorff dimension. Consider points p, q, r ∈ Y . By assumption
there exist (not necessarily unique) geodesic paths connecting any pair
of these points. Any geodesic segment between p and q will be notated
simply by pq and its length by |pq|. �pqr will denote a geodesic triangle
formed by geodesic segments pq, pr, and rq. �̃pqr will denote the
comparison triangle in H

2 with side lengths |pq|, |pr|, and |rq|. Its
vertices will be labelled in the obvious way by p̃, q̃, and r̃.

Y is an Alexandrov space with curvature bounded below by −1 if (in
addition to the above conditions) for some neighborhood Uy of each
point y ∈ Y the following condition is satisfied: For any triangle �pqr
with vertices in Uy and any point s on the side qr the inequality |ps| ≥
|p̃s̃| is satisfied, where s̃ is the point on the side q̃r̃ of the triangle �̃pqr
corresponding to s, that is, such that |qs| = |q̃s̃|, |rs| = |r̃s̃|.

2.5 Volume growth entropy

Volume growth entropy is a fundamental geometric invariant which
plays a crucial role in the techniques developed by Besson-Courtois-
Gallot. Let X be a metric space of Hausdorff dimension n, X̃ be the
universal cover of X, and Hn be n-dimensional Hausdorff measure. The
volume growth entropy of X is the number

h(X̃) := lim sup
R→∞

1
R
logHn(B

X̃
(x,R)),

where x is any point in X̃, and the ball B
X̃
(x,R) is in X̃. The volume

growth entropy as defined is independent of the choice of x ∈ X̃. The
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following theorem of Burago, Gromov, and Perelman will be vitally
important for this paper.

Theorem 2.1 ([8], p. 40). If X is an Alexandrov space with cur-
vature bounded below by −1 and Hausdorff dimension n ∈ N, then the
volume growth entropy of X is less than or equal to the volume growth
entropy of H

n, namely

h(X̃) ≤ h(Hn) = n− 1.

2.6 Generalized differentiable and Riemannian structures

See [18]. Let X be a toplogical space, Ω ⊆ X, n ∈ N and 0 ≤ r < 2. A
family {(Uφ, φ)}φ∈Φ is called a Cr-atlas on Ω ⊆ X if the following hold:

(1) For each φ ∈ Φ, Uφ is an open subset of X.

(2) Each φ ∈ Φ is a homeomorphism from Uφ into an open subset of
R
n.

(3) {Uφ}φ∈Φ is a covering of Ω.

(4) If two maps φ, ψ ∈ Φ satisfy Uφ
⋂
Uψ �= ∅, then

ψ ◦ φ−1 : φ
(
Uφ
⋂

Uψ

)
−→ ψ

(
Uφ
⋂

Uψ

)
is Cr on φ(Uφ

⋂
Uψ
⋂
Ω).

A family {gφ}φ∈Φ is called a Cr−1-Riemannian metric associated
with a Cr-atlas {(Uφ, φ)}φ∈Φ on Ω ⊆ X if the following hold:

(1) For each φ ∈ Φ, gφ is a map from Uφ to the set of positive sym-
metric matrices.

(2) For each φ ∈ Φ, gφ ◦ φ−1 is Cr−1 on φ(Uφ
⋂
Ω).

(3) For any x ∈ Uφ
⋂
Uψ, φ, ψ ∈ Φ, we have

gψ(x) = [d(φ ◦ ψ−1)(ψ(x))]tgφ(x)[d(φ ◦ ψ−1)(ψ(x))].

The entire reason for introducing this terminology is the following
theorem.
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Theorem 2.2 ([18]). Let X be an n-dimensional Alexandrov space.
Then there exists a subset S ⊂ X of Hausdorff dimension ≤ n−1 (a set
of singular points), a C1-atlas on X \ S, and a C0-Riemannian metric
on X \ S associated with the atlas such that:

(1) The maps φ : Uφ −→ R
n of the C1-atlas are locally bilipschitz.

(2) For any x, y ∈ X \ S and ε > 0, x and y can be joined by a path
in X \ S of length less than d(x, y) + ε.

(3) The metric structure on X\S induced from the Riemannian struc-
ture coincides with the original metric of X.

(4) In particular, the Riemannian metric induces a volume element
dvolX on X \ S. The measure on X obtained by integrating this
element equals n-dimensional Hausdorff measure on X (S has zero
measure).

Remark 2.1 Statements (1), (2), and (4) above are not found in
the beginning of [18]. (1) can be found on page 651, (2) on page 654,
and (4) on page 657. In (4), volume elements are used instead of forms
to avoid orientation issues. For an explanation of this terminology, see
[22, p. 351].

We may therefore unambiguously define Vol(X) := Hn(X).
The standard formulation of Rademacher’s theorem states that lo-

cally Lipschitz maps R
n −→ R

m are differentiable almost everywhere
[14, Thm.7.3]. Here we will use a generalized Rademacher’s theorem
stating that locally Lipschitz maps from R

n into a separable Hilbert
space are differentiable almost everywhere. This fact can be assembled
from more general propositions in [1]. Namely, use Corollary 5.12 on
page 107, Proposition 6.41 on page 154 (note that Hilbert space is re-
flexive), and Proposition 4.3 on page 84. This version of Rademacher’s
theorem remains true for Alexandrov spaces.

Corollary 2.3. Let X be an n-dimensional Alexandrov space, L2

a separable Hilbert space, and F : X −→ L2 a locally Lipschitz map.
Then F is differentiable almost everywhere in X.

Proof. By Theorem 2.2, F ◦ φ−1 is locally Lipschitz. Therefore by
Rademacher’s theorem, it is differentiable a.e. Points of differentiability
in φ(Uφ \ S) are preserved under change of coordinates. q.e.d.
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3. Spherical volume

This section will introduce the notion of spherical volume, a geo-
metric invariant defined by Besson-Courtois-Gallot [2, 3]. It was used
in the original proof of the Besson-Courtois-Gallot Theorem [3], but
later proofs do not make specific reference to it. The computation of
spherical volume stated in this section is nontrivial; it is the key fact
used in this paper.

Let X be a metric space of Hausdorff dimension n. Then L2(X) is
the Hilbert space of square-integrable measurable functions on X with
respect to n-dimensional Hausdorff measure, and S∞(X) denotes the
unit sphere in L2(X). In a natural way, the isometry group of X acts
by isometries on L2(X). Namely for γ ∈ Isom(X), γ.f := f ◦ γ−1. This
clearly restricts to an action on S∞(X).

Definition 3.1. Let Y be an n-dimensional Alexandrov space
with curvature bounded below. (In particular, Y could be a compact
Riemannian manifold.) Let Ỹ be the universal cover of Y . Let Θ :
Ỹ −→ S∞(Ỹ ) be a π1(Y )-equivariant, positive, Lipschitz map. For all
points x ∈ Ỹ where Θ is differentiable, define a “metric” gΘ by

gΘ(u, v)x := 〈dΘx(u), dΘx(v)〉L2(Ỹ )
,

where u, v ∈ TxỸ . As Θ is Lipschitz, Corollary 2.3 implies gΘ is defined
almost everywhere.

Definition 3.2. Using the previous notation, since Θ is assumed
to be equivariant, gΘ descends to a “metric” on Y itself. For x ∈ Y , if
TxY exists and has an orthonormal basis {ei}, then define

detY (gΘ)(x) := det(gΘ(ei, ej)x)ij .

detY (gΘ) is defined a.e. and is, up to sign, independent of the choice of
{ei}. Therefore it makes sense to define

Vol (Θ) :=
∫
Y
|detY (gΘ)|1/2dvolY .

Definition 3.3 ([2]). For Y a compact Alexandrov space with
curvature bounded below, define the set L to be all Lipschitz, positive,
π1(Y )-equivariant maps from Ỹ to the unit sphere S∞(Ỹ ) ⊂ L2(Ỹ ).
Define the spherical volume of Y to be

SphereVol(Y ) := inf
Θ∈L

{Vol (Θ)}.
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Theorem 3.1 ([3]). If Mhyp is a closed oriented hyperbolic n-
manifold, then

SphereVol(Mhyp) =
(
(n− 1)2
4n

)n/2
Vol(Mhyp).

Remark 3.1. To the author’s knowledge, there does not exist a
published proof of Theorem 3.1 exactly as it is stated here. Theorem 3.1
is proven in [3], but for a slightly different definition of spherical volume.
However, the theorem as stated can be easily assembled from published
facts. In [2, p. 432], using Definition 3.3, it is proven that

SphereVol(Mhyp) ≤
(
(n− 1)2
4n

)n/2
Vol(Mhyp).

And in [3, p. 744], the slightly modified definition of spherical volume is
shown to be less than or equal to that given in Definition 3.3. Together,
this proves Theorem 3.1. See also [4, p. 627].

4. The analysis

The goal of this section is to prove Theorem 4.4, which will largely
follow from Propositions 4.1 and 4.3. To begin, we extend an estimate
proven in [3, Prop. 3.4] to Alexandrov spaces.

Proposition 4.1. Let X be an Alexandrov space with curvature
bounded below. Then

SphereVol(X) ≤
(
h(X̃)2

4n

)n/2
Vol(X).

Proof. By Theorem 2.2, let Ω ⊆ X̃ be a set of full Hausdorff measure
which has a C1-differentiable structure and is a C0-Riemannian mani-
fold. Let L2(X̃) denote the Hilbert space of measurable real functions
on the universal cover of X with respect to n-dimensional Hausdorff
measure. Recall that h(X̃) is the volume growth entropy of (X, d). For
c > h(X̃)/2 define a map

Ψc : X̃ −→ L2(X̃) by [Ψc(x)](y) = e−cd(x,y),

where d(x, y) denotes the lifted metric on X̃. It is an elementary es-
timate to show c > h(X̃)/2 implies Ψc(x) ∈ L2(X̃). (Use that for
R� 0, Hn(B(x,R)) ≤ e(h(X̃)+δ)R.)
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The goal here is to use the map Ψc to obtain the estimate of Propo-
sition 4.1. To do so, we must first show Ψc is Lipschitz, positive, and
Γ := π1(X) equivariant. Positivity is obvious. Recall that for f ∈ L2(X̃)
and γ ∈ Γ the Γ-action on L2(X̃) is given by

(γ.f)(x) = f(γ−1x).

By this definition Ψc is clearly Γ-equivariant. Namely,

[Ψc(γx)](y) = e−cd(γx,y) = e−cd(x,γ
−1y) = [γ.Ψc(x)](y).

Lemma 4.2. Ψc is Lipschitz.

Proof. Pick points x, y ∈ X̃. The goal is to control∫
X̃
|e−cd(x,ζ) − e−cd(y,ζ)|2dζ.

By the triangle inequality,

e−cd(x,ζ) − e−cd(y,ζ) ≤ e−cd(x,ζ) − e−cd(y,x)e−cd(x,ζ)

= e−cd(x,ζ)(1− e−cd(y,x)).

=⇒ |e−cd(x,ζ) − e−cd(y,ζ)| ≤ (e−cd(x,ζ) + e−cd(y,ζ))(1− e−cd(x,y)).

Therefore,∫
X̃
|e−cd(x,ζ) − e−cd(y,ζ)|2dζ

≤ (1− e−cd(x,y))2
∫
X̃
[e−cd(x,ζ) + e−cd(y,ζ)]2dζ

≤ (1− e−cd(x,y))2
∫
X̃
[e−2cd(x,ζ) + 2e−cd(x,ζ)e−cd(y,ζ) + e−2cd(y,ζ)]dζ

= (1− e−cd(x,y))2
[
‖Ψc(x)‖2 +

∫
X̃
2e−cd(x,ζ)e−cd(y,ζ)dζ + ‖Ψc(y)‖2

]
≤ (1− e−cd(x,y))2

[‖Ψc(x)‖2 + 2‖Ψc(x)‖‖Ψc(y)‖+ ‖Ψc(y)‖2] .
Apply Cauchy-Schwarz to obtain the final line.

For all γ ∈ Γ

‖Ψc(γx)‖ = ‖γ.Ψc(x)‖ = ‖Ψc(x)‖.
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This means the real function ‖Ψc‖ : X̃ −→ R descends to a continuous
function from compact X to R, forcing it to have a finite supremum
b <∞. Therefore,∫

X̃
|e−cd(x,ζ) − e−cd(y,ζ)|2dζ ≤ (1− e−cd(x,y))2(4b2).

To finish things off, notice that for t ≥ 0, (1− e−ct) ≤ ct. Applying this
yields the final inequality∫

X̃
|e−cd(x,ζ) − e−cd(y,ζ)|2dζ ≤ (cd(x, y))2(4b2),

which implies that
‖Ψc(x)−Ψc(y)‖

d(x, y)
≤ 2bc.

q.e.d.

We must compute the derivative of Ψc. It is easy to determine what
its derivative should be. Namely, for a.e. (x, y) and v ∈ TxΩ, naively
differentiating yields

[(dΨc)x(v)](y) = −ce−cd(x,y)Dd(x,y)(v, 0).

(Dd denotes the derivative of the metric. The metric is 1-Lipschitz and
therefore differentiable a.e.) This formula can be justified by a straight-
forward application of the Lebesgue dominated convergence theorem.
(Simply write down the definition of the derivative. It involves a limit
outside of an integral. Each term of the integrand is dominated by a
constant times e−2cd(x,y), which is integrable. Therefore the limit may
be pushed inside the integral.)

Recall that S∞(X̃) denotes the unit sphere in L2(X̃). Define the
map π : L2(X̃) \ {0} −→ S∞(X̃) to be radial projection. If Ψc is
differentiable at x then clearly π ◦ Ψc is still differentiable at x. For
f, θ ∈ L2(X̃), a two line computation yields

dπf (θ) =
θ

‖f‖ −
f

‖f‖3 〈f, θ〉.

Therefore, for a.e. x ∈ Ω and v ∈ TxX̃ we have

d(π ◦Ψc)x(v) = (dΨc)x(v)
‖Ψc(x)‖ − Ψc(x)

‖Ψc(x)‖3 〈Ψc(x), (dΨc)x(v)〉.
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So finally, (as in [2, p. 430])

(1) ‖d(π ◦Ψc)x(v)‖2 = ‖(dΨc)x(v)‖2
‖Ψc(x)‖2 − 1

‖Ψc(x)‖4 〈Ψc(x), (dΨc)x(v)〉
2.

For simplicity, define Φc := π ◦Ψc. For all points x ∈ Ω at which Φc
is differentiable, define the “metric” gΦ by

gΦ(u, v) = 〈dΦc(u), dΦc(v)〉L2 ,

where u, v ∈ TxΩ. (For brevity, we write gΦ instead of gΦc .)
If gΦ is defined at x, then pick an orthonormal basis {ei} ⊂ TxΩ.

The above computations yield the key inequality

TraceΩ(gΦ) =
n∑
i=1

‖(dΦc)x(ei)‖2 ≤
∑ ‖(dΨc)x(ei)‖2

‖Ψc(x)‖2 (by (1))

=
1

‖Ψc(x)‖2
∫ ∑

([(dΨc)x(ei)](y))
2 dy

=
1

‖Ψc(x)‖2
∫ ∑(

−ce−cd(x,y) Dd(x,y)(ei, 0)
)2

dy

=
c2

‖Ψc(x)‖2
∫

e−2cd(x,y)
(∑

(Dd(x,y)(ei, 0))
2
)
dy.

The distance metric d is 1-Lipschitz. Thus for fixed y, the function
x �→ d(x, y) has an almost everywhere defined gradient vector field with
norm bounded by 1. In other words,

n∑
i=1

(Dd(x,y)(ei, 0))
2 ≤ 1 for a.e. x.

(In fact equality holds a.e. This will not be used here.) Combining this
with the above inequality yields

TraceΩ(gΦ) ≤ c2.

Φc is Γ-equivariant. Γ acts by isometries. Therefore gΦ is invariant
under the action of Γ and detΩ(gΦ) descends to a function on X defined
a.e. Since geometric mean is dominated by arithmetic mean, we have
the inequality

√
|detΩ(gΦ)| ≤

(
1
n
TraceΩ(gΦ)

)n/2
≤ (c2/n)n/2.



minimal volume alexandrov spaces 207

Since c > h(X̃)/2 is arbitrary, this completes the proof of Proposi-
tion 4.1. q.e.d.

Spherical volume is in fact a bilipschitz invariant.

Proposition 4.3. Let F : X −→ Y be a bilipschitz homeomorphism
between n-dimensional Alexandrov spaces with curvature bounded below.
Then

SphereVol(X) = SphereVol(Y ).

Proof. Let F also denote the lifted bilipschitz map X̃ −→ Ỹ . Let
Φ : Ỹ −→ S∞(Ỹ ) be a Lipschitz, positive, Γ-equivariant map. Consider
the composition Φ◦F : X̃ −→ S∞(Ỹ ). Use Φ◦F to define the “metric”
gΦ◦F on X. A computation shows that

detX(gΦ◦F )(p) = (JacF )(p)2 · detY (gΦ)(F (p)) a.e.

Therefore∫
X
|detX(gΦ◦F )|1/2dvolX =

∫
X
|JacF | · |detY (gΦ) ◦ F |1/2dvolX

=
∫
Y
|detY (gΦ)|1/2dvolY ≤ SphereVol(Y ).

The map I : L2(Ỹ ) −→ L2(X̃) defined by

I : f �−→ (f ◦ F ) · |JacF |1/2

is a Γ-equivariant isometry taking positive functions to positive func-
tions. By composing this isometry with Φ ◦ F we obtain a Lipschitz,
positive, Γ-equivariant map

I ◦ Φ ◦ F : X̃ −→ S∞(X̃).

Since I is an isometry, we obtain

SphereVol(X) ≤ Vol (I ◦ Φ ◦ F )
=
∫
X
|detX(gΦ◦F )|1/2dvolX ≤ SphereVol(Y ).

The opposite inequality is proven by reversing the roles of Y and X.
q.e.d.

We are now ready to prove:
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Theorem 4.4. Let X be an Alexandrov space with curvature
bounded below by −1, Mhyp a closed hyperbolic manifold. If X and
Mhyp are bilipschitz, then

Vol(X) ≥ Vol(Mhyp).

Proof. If Mhyp is nonorientable then lift both X and Mhyp to an
oriented metric double cover. If Theorem 4.4 is true for these double
covers, then it follows also for X and Mhyp. Therefore assume without
a loss of generality that Mhyp is oriented.

Recall that by Theorem 2.1, h(X̃) ≤ (n− 1). By Theorem 3.1,

SphereVol(Mhyp) =
(
(n− 1)2
4n

)n/2
Vol (Mhyp).

By combining these facts with Propositions 4.1 and 4.3 we obtain(
(n− 1)2
4n

)n/2
Vol (Mhyp) = SphereVol(Mhyp)

= SphereVol(X) ≤
(
h(X̃)2

4n

)n/2
Vol(X) ≤

(
(n− 1)2
4n

)n/2
Vol(X).

This completes the proof of Theorem 4.4. q.e.d.

5. Application to infinite volume hyperbolic manifolds

Recall the definition of the invariant V.
Definition 5.1. Let N be a compact smooth n-manifold. Then

V(N) := inf
M∈cctop(N)

{Vol(CM )}.

Theorem 5.1. Let N be a smooth n-manifold. If there exists
M0 ∈ cctop(N) such that ∂CM0 ⊂M0 is a totally geodesic submanifold,
then

V(N) = Vol(CM0).

Assume there exists such an M0 ∈ cctop(N). Pick M ∈ cctop(N).
To prove the theorem, it is enough to show

Vol(CM0) ≤ Vol(CM ).
As a first step towards applying Theorem 4.4, we will establish the

required bilipschitz map.
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Lemma 5.2. Let Nε(CM ) denote a closed ε-neighborhood of CM .
Then Nε(CM ) and CM0 are bilipschitz.

Proof. As the hyperbolic metrics in consideration are convex co-
compact, CM and CM0 are both compact. By virtue of its beautiful
boundary, CM0 is diffeomorphic to N . Nε(CM ) is a C1,1-manifold with
boundary, C1,1-diffeomorphic to N . (This argument follows from the
fact that the complement of any ε-neighborhood of the convex core is
a C1,1-smooth product of a surface and an interval [11].) Therefore
Nε(CM ) and CM0 are C1,1-diffeomorphic. As they are both compact,
the diffeomorphism is bilipschitz. q.e.d.

Define Xε and X0 to be the metric doublings of Nε(CM ) and CM0

across their respective boundaries. X0 is a closed hyperbolic manifold.
Clearly the bilipschitz homeomorphism of the lemma can be doubled to
a bilipschitz homeomorphism F : X0 −→ Xε. Define the subset

Ω := Xε \ ∂Nε(C).

Ω ⊆ Xε is an open subset of full n-dimensional Hausdorff measure which
is a Riemannian manifold.

To apply Theorem 4.4, it remains to prove that Xε is an Alexandrov
space with curvature bounded below by −1, and that Xε has Hausdorff
dimension n. To do so we will use the following theorem.

Theorem 5.3 ([8, 20]). Let C be a closed strictly convex n-dimen-
sional (n ≥ 2) submanifold of a complete n-dimensional hyperbolic man-
ifold. Assume the boundary of C is at least C1 smooth. Let X be
the metric space obtained by doubling C across its boundary. X is an
Alexandrov space with curvature bounded below by −1.

Remark 5.1. A more general version of this theorem is stated
without proof in [8, p. 54]. A proof can be found in the unpublished
manuscript [20, p. 28]. To the author’s knowledge, a published proof
does not exist. For completeness, an elementary proof of Theorem 5.3
(avoiding the beautiful machinery of Perelman et al.) has been included
in this paper as an appendix.

Lemma 5.4. Let M be a complete hyperbolic n-manifold with con-
vex core CM . The metric doubling of a closed ε-neighborhood of CM
across its boundary is an Alexandrov space with curvature bounded be-
low by −1. Further, it has Hausdorff dimension n.

Proof. Two standard facts of hyperbolic geometry are that the
boundary of an ε-neighborhood of CM is C1,1 smooth, and the closed
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ε-neighborhood of CM is strictly convex [11]. Theorem 5.3 can now
be applied to show DNε(CM ) is an Alexandrov space with curvature
bounded below by −1.

Now to show DNε(CM ) has Hausdorff dimension n. ∂Nε(CM ) is
C1,1 and of topological dimension n−1, implying it is has n-dimensional
Hausdorff measure zero. (DNε(CM ) \ ∂Nε(CM )) is a Riemannian n-
manifold. Therefore DNε(CM ) has Hausdorff dimension n. q.e.d.

Therefore, applying Theorem 4.4 yields

Vol(Xε) ≥ Vol(X0).

Obtaining the inequality of Theorem 5.1 is now trivial. For all ε > 0,

Vol (Nε(CM )) = (1/2)Vol (Xε) ≥ (1/2)Vol (X0) = Vol (CM0).

Therefore,
Vol (CM ) ≥ Vol (CM0).

This completes the proof of Theorem 5.1. q.e.d.

As an immediate corollary, we can now relate V(N) to the Gro-
mov norm of DN , the topological doubling of N across its boundary.
Let ‖[ · ]‖ denote Gromov norm. For a definition of this norm, and a
scintillatingly beautiful proof of the following theorem, see [24].

Theorem (Gromov). If X is a closed oriented hyperbolic n-manifold
and vn is the volume of a regular ideal simplex in H

n, then

‖[X]‖ = Vol(X)/vn.

Corollary 5.5. Let N be a smooth oriented n-manifold. If there
exists M0 ∈ cctop(N) such that ∂CM0 ⊂ M0 is a totally geodesic codi-
mension one submanifold, then

‖[DN ]‖ = 2V(N)
vn

.

Proof. Simply double CM0 across its boundary to obtain a closed
hyperbolic manifold diffeomorphic to DN . Apply Gromov’s theorem.

q.e.d.

Like the Gromov norm, V behaves well under finite covers.
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Corollary 5.6. Let N be a smooth n-manifold. Assume there exists
M0 ∈ cctop(N) such that ∂CM0 ⊂M0 is a totally geodesic submanifold.
If Ñ is a covering space of N of degree k <∞, then V(Ñ) = kV(N).

Proof. There exists an M̃0 ∈ cctop(Ñ) such that ∂CM̃0
has totally

geodesic boundary and M̃0 is a geometric degree k cover of M0. q.e.d.

Application to 3-Manifolds

For n > 3, the geometry of hyperbolic n-manifolds is not well under-
stood. Little is known about what types of manifolds might satisfy the
hypotheses of Theorem 5.1. For this reason, the most interesting results
are obtained when attention is restricted to 3-manifolds. In a certain
sense, a “generic” topological 3-manifold will be acylindrical. (Roughly,
if the boundary components are sufficiently inter-tangled, then essen-
tial cylinders should not exist and the boundary should be incompress-
ible.) With this in mind the following consequence of Mostow Rigidity
and Thurston’s Hyperbolization Theorem shows that the hypotheses of
Theorem 5.1 do apply to a large class of 3-manifolds.

Corollary of Rigidity and Hyperbolization ([25, p. 14]). Let
N be a compact irreducible atoroidal 3-manifold such that ∂N is a
nonempty collection of surfaces with negative Euler characteristic. N is
acylindrical if and only if there exists a unique M0 ∈ cctop(N) such that
∂CM0 is totally geodesic.

Remark 5.2. All facts in this section have been stated without
parabolics. With some notational effort, more general statements can
be made.

This remarkable corollary immediately suggests the conjecture men-
tioned in Section 1. Let I(N) denote the set of isometry classes of
hyperbolic 3-manifolds homotopy equivalent to N . Recall the volume
function Vol:M ∈ I(N) �−→ Vol(CM ).

Conjecture 5.7. Retain the above notation. If N is acylindrical,
then for all M ∈ I(N) \ {M0},

Vol (CM0) < Vol (CM ).

In other words, M0 is the unique global minimum of the function Vol.

The first partial answer to this conjecture was provided by Bonahon.
With entirely different techniques he proved the following.
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Theorem 5.8 ([5]). Let M0 ∈ cctop(N) be such that CM0 is codi-
mension 0 and ∂CM0 is totally geodesic. Then M0 is a strict local
minimum of the function Vol.

In this context, Theorem 5.1 is another partial answer to Conjec-
ture 5.7.

Theorem 5.9. Let N be an acylindrical compact irreducible atoro-
idal 3-manifold such that ∂N is a nonempty collection of surfaces with
negative Euler characteristic. Then there exists an M0 ∈ cctop(N) such
that ∂CM0 is totally geodesic, and M0 is a global minimum of the func-
tion Vol over I(N).

Proof. Pick an M ∈ I(N). It suffices to show that Vol(CM ) ≥
Vol(CM0). For geometrically infinite manifolds, this inequality is trivial.
So let of first assume that M is convex cocompact. Then because N
is acylindrical, M is in fact homeomorphic to int(N) [12, Lem.X.23, p.
235]. Thus the desired inequality follows from Theorem 5.1.

Now assume that M is geometrically finite, but not convex cocom-
pact. By [6], M is the strong limit of a sequence of convex cocompact
manifolds. Vol is continuous under strong limits [23]. This proves the
desired inequality. q.e.d.

A skeptic could accuse this theorem of proving one object we do
not understand is equal to another object we do not understand. This
is not true. Quite a bit is known about hyperbolic 3-manifolds with
totally geodesic boundary. Most importantly, Kojima [13] proved they
can always be geometrically decomposed into partially truncated hyper-
bolic polyhedra. Paoluzzi and Zimmermann [19] constructed an infinite
family of such manifolds with one boundary component. In some cases,
the volume Vol(CM0) can be computed explicitly (i.e., actual numbers!)
using these decompositions into truncated polyhedra. For a list of such
volumes, see [26].

6. Application to cone-manifolds

Theorem 4.4 may also be applied to cone-manifolds with all cone
angles ≤ 2π.

Definition 6.1 ([10], p. 53). An n-dimensional cone-manifold is a
manifold, X, which can be triangulated so that the link of each sim-
plex is piecewise linear homeomorphic to a standard sphere and X is
equipped with a complete path metric such that the restriction of the
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metric to each simplex is isometric to a geodesic simplex of constant
curvature K. The singular locus Σ consists of the points with no neigh-
borhood isometric to a ball in a Riemannian manifold.

It follows that:

• Σ is a union of totally geodesic closed simplices of dimension n−2.
• At each point of Σ in an open (n − 2)-simplex, there is a cone

angle which is the sum of the dihedral angles of the n-simplices
containing the point.

(Notice that cone-manifolds whose singular loci have vertices are
allowed.)

Lemma 6.1 ([8], p. 7). If all cone angles of an n-dimensional cone-
manifold X are ≤ 2π, and K ≥ −1, then X is an Alexandrov space with
curvature bounded below by −1.

An n-dimensional cone-manifold clearly has Hausdorff dimension n.
Therefore we have the following theorem.

Theorem 6.2. Let X be an n-dimensional cone-manifold with
all cone angles ≤ 2π and K ≥ −1. Let Mhyp be a closed hyperbolic
n-manifold. If X and Mhyp are bilipschitz then

Vol(X) ≥ Vol(Mhyp).

In the case when n = 3, applying the Manifold Hauptvermutung
[21] yields a stronger corollary. To prove it, a bit of classical termi-
nology is required. A combinatorial manifold is a simplicial complex
K such that the link of each simplex is piecewise linear homeomorphic
to a standard sphere. (Notice that a cone-manifold is a combinatorial
manifold.) A C1-triangulation of a smooth manifold Z is a combinato-
rial manifold K together with a homeomorphism f : K −→ Z which is
a piecewise C1-diffeomorphism on each simplex. A result of Whitehead
[28, p. 822, Thm. 7] states that any closed smooth manifold Z admits
a C1-triangulation.

Corollary 6.3. Let X be a 3-dimensional cone-manifold with all
cone angles ≤ 2π and K ≥ −1. Let Mhyp be a closed hyperbolic 3-
manifold. If X and Mhyp are homeomorphic then

Vol(X) ≥ Vol(Mhyp).
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Proof. It is sufficient to upgrade the homeomorphism to a bilipschitz
homeomorphism. Pick a C1-triangulation f : K −→ Mhyp. Let K have
the obvious piecewise Euclidean metric. For each simplex σ of K, f |σ
is clearly bilipschitz. By compactness, f is globally bilipschitz.

K and X are homeomorphic. By [15], this implies there exists a
piecewise linear homeomorphism X −→ K. A piecewise linear homeo-
morphism between closed combinatorial manifolds is bilipschitz. There-
fore, by postcomposing with f , X and Mhyp are bilipschitz. Now the
previous theorem can be applied. q.e.d.

Previously, results similar to these could be obtained by using the
Schläfli formula for polyhedra [10, p. 71]. But to compare cone-mani-
folds X and Mhyp using the Schläfli formula it is necessary to have a
one-parameter family of cone-manifolds connecting them. Such a path
in deformation space is not necessary to apply Corollaries 6.2 and 6.3.
We now sketch an example where such a path does not exist. Let γ be
a simple closed geodesic in a closed hyperbolic manifold Mhyp. There
exists a simple closed curve γ′ ⊂ Mhyp such that γ′ is homotopic to
γ, Mhyp \ γ is not homeomorphic to Mhyp \ γ′, and Mhyp \ γ′ admits
a hyperbolic structure [17]. There exist cone-manifold deformations of
this hyperbolic structure with singular locus γ′ and strictly positive cone
angle [10, p. 99]. If it were possible to increase the cone angle all the
way to 2π, then by Mostow Rigidity Mhyp \ γ′ would be homeomorphic
to Mhyp \ γ. Therefore such a family of deformations does not exist.

7. Concluding remarks

There are a couple obvious ways these results could be improved:

1. Prove that hyperbolic metrics on closed manifolds uniquely mini-
mize volume over Alexandrov metrics in the same bilipschitz class.
This is probably impossible using only spherical volume, as spher-
ical volume was insufficient for proving the uniqueness statement
of the Besson-Courtois-Gallot theorem.

2. Control the growth of the function Vol as a convex cocompact
hyperbolic manifold M moves away from the minimum M0 in
cctop(N). It is a bit hidden the way the proofs were written here,
but this could be done by improving the estimate of h(X̃). In 3
dimensions, it seems plausible that as the bending lamination on
CM becomes more extreme, h(X̃) should go down. Proving this
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strong result would require knowing something about Alexandrov
spaces: how the local geometry near singularities affects the large
scale geometry.

Appendix A. Proof of Theorem 5.3

Recall the statement of the theorem.

Theorem 5.3. Let C be a closed strictly convex n-dimensional
(n ≥ 2) submanifold of a complete n-dimensional hyperbolic manifold.
Assume the boundary of C is at least C1 smooth. Let X be the metric
space obtained by doubling C across its boundary. X is an Alexandrov
space with curvature bounded below by −1.

This theorem will be proven using a slightly different definition of
Alexandrov space. Namely, X will be proven to be an angled Alexan-
drov space with curvature bounded below by −1. (For locally compact
spaces, these notions are equivalent, see Remark A.1.) By doing so, the
arguments remain a bit closer to those used on more familiar geometric
objects. It is therefore necessary to define what will be meant by angle.

Let Y be geodesic metric space. ∠̃rpq will denote the angle in H
2

between the sides p̃r̃ and p̃q̃ of a comparison triangle �̃pqr. Defining
angles in Y itself is a bit trickier.

Definition A.1. Let rpq denote the union of a geodesic segment pr
and a geodesic segment pq. Let {ri} ⊂ pr and {qi} ⊂ pq be sequences
of points not equal to p such that ri −→ p and qi −→ p. Then define

∠rpq := lim
i→∞

∠̃ripqi.

Clearly one must show this limit exists in order for this definition to
make any sense.

Definition A.2. An angled Alexandrov space with curvature bound-
ed below by −1 is a complete geodesic metric space Y such that for all
points x ∈ Y there exists an open neighborhood Ux of x satisfying the
following three conditions for all geodesic triangles �pqr with vertices
in Ux:

(A) The angle ∠rpq is defined.

(B) None of the angles of the triangle�pqr is less than the correspond-
ing angle of the comparison triangle in H

2, i.e., ∠rpq ≥ ∠̃rpq.
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(C) The sum of adjacent angles is equal to π, i.e., if s is an interior
point of a geodesic pq then for any geodesic sr we have ∠psr +
∠rsq = π.

These conditions have simple geometric consequences for the space.
Condition (B) states that triangles in Y must be fat, and condition (C)
guarantees that geodesics do not branch.

Remark A.1. For Y locally compact, Y is an angled Alexandrov
space with curvature bounded below by −1 if and only if it is an Alexan-
drov space with curvature bounded below by −1. See [8, p. 7], or [7, p.
114].

Now to prove Theorem 5.3. Let X be as in the statement of the
theorem. It is easy to see that X is geodesic, complete, and locally
compact. It is therefore sufficient to prove X satisfies conditions (A),
(B), and (C). Since these are all local conditions, nothing is lost by lifting
to the universal cover of the ambient hyperbolic manifold in which C
lives. Therefore assume without a loss of generality that C is a simply
connected subset of H

n.
Let C1 and C2 denote the two isometric copies of C imbedded into

X. As their boundaries coincide, denote their common boundary by ∂C.
Assume C2 is the half with the opposite orientation of C. For points
x ∈ X \ ∂C there exists a neighborhood Ux  x entirely contained in
either int(C1) or int(C2). So we can assume Ux is an open set of H

n and
therefore trivially satisfies conditions (A), (B), and (C). So the definition
needs to be verified only for points lying on ∂C.

For points p, q ∈ int(Ci) lying on the same side of X, convexity and
negative curvature imply the geodesic pq is unique and lies entirely in
Ci. This is true even if p ∈ int(Ci) and q ∈ ∂C. If p, q ∈ ∂C then there
exist exactly two geodesics connecting them. One geodesic lies in C1,
the other lies in C2, and they are exchanged by the natural isometric
involution of X. If p ∈ int(C1) and q ∈ int(C2) then by convexity of
C and minimality of geodesics any geodesic pq (no longer necessarily
unique) intersects the boundary ∂C in a unique point c. As ∂C was
assumed to be C1, it makes sense to speak of the tangent space to
∂C at c. Thus, the angles between the tangent space and the smooth
geodesics pc, qc are well-defined. The first lemma is to prove those
angles of incidence are equal. Informally speaking, we will show that
for geodesics in X intersecting ∂C the angle of incidence equals the
angle of reflection. First this terminology must be clarified.
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Consider the following model for the metric space X. Embed C1

and C2 on top of each other into H
n respectively by an orientation-

preserving and an orientation-reversing isometry with identical range.
Let Φ be the gluing-together of these two isometries. Let c′ be Φ(c), p′

be Φ(p), and q′ be Φ(q). Then clearly the image of a geodesic segment
pq under Φ is a shortest path connecting p′ to q′ passing through Φ(∂C).
Let this shortest path be σ. The analogy to keep in mind is that σ is
the path light would travel bouncing off of a reflective surface.

Lemma A.1 (angle of incidence equals angle of reflection). Let 1N
be the inward-pointing normal vector to Φ(X) at c′. Let ∠Hn denote
angles measured in H

n. Then

∠Hn( 1N, c′p′)) = ∠Hn( 1N, c′q′).

More importantly, for any vector 1v in the tangent space of C at c′ such
that the inner product of 1v with 1N is nonnegative, the following inequal-
ity holds:

∠Hn( 1N, c′p′)) + ∠Hn( 1N, c′q′) ≤ ∠Hn(1v, c′p′)) + ∠Hn(1v, c′q′) ≤ π

with equality on the right if and only if 1v⊥ 1N .

Proof. Define Π to be the totally geodesic (n− 1)-dimensional sub-
space of H

n tangent to Φ(X) at c′. Let γ be the shortest path in H
n

(not necessarily contained in Φ(X)) joining p′ to q′ passing through Π.
Π and γ intersect in a unique point. If Π

⋂
γ = c′, then the hypotheses

are trivially true by elementary geometry. So assume Π
⋂
γ is not c′.

See Figure 1.

p’

c’
a

b

q’

Figure 1: The image of X under Φ.

By convexity of C, this implies that γ intersects Φ(∂C) in two points
a and b. Recall σ is the shortest path in Φ(X) connecting p′ to q′ passing
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through Φ(∂C). So by the triangle inequality

length of σ ≤ dHn(p′, a) + dHn(a, b) + dHn(b, q′) ≤ length of γ.
Therefore the length of σ is less than or equal to the length of γ. But
γ was assumed to be minimal in H

n. This is a contradiction. Therefore
it follows that Π

⋂
γ = c′. q.e.d.

This lemma provides a good picture for the behavior of geodesics in
X between C1 and C2. What remains is to prove that angles are defined
in X and to find a simple formula for them. The angle between any two
geodesics leaving a point in the interior of either C1 or C2 is trivially
defined and is equal to the corresponding angle in the image of Φ in H

3.
Even for points on the boundary ∂C the angle between two geodesics
is obvious for geodesics both heading into the same side of X. So the
only interesting case is when two geodesic rays originating at p ∈ ∂C
head into opposite halves of X. This means there exist r ∈ int(C1) and
q ∈ int(C2) such that we are considering geodesics pr and pq.

Understanding this situation requires a different model. Let

Ψ1 : C1 −→ H
n and Ψ2 : C2 −→ H

n

be orientation-preserving isometries such that the images are tangent
at their unique point of intersection

p′ := Ψ1(p) = Ψ2(p).

Let S1 and S2 be the half-spaces ofHn which contain Ψ1(C1) and Ψ2(C2)
respectively and intersect in a plane through p′. (See Figure 2.)

Lemma A.2. The angle in X formed by the geodesics pr and
pq exists and is equal to the angle in H

n made by Ψ1(pr) and Ψ2(pq),
namely

∠qpr = ∠HnΨ2(q)p′Ψ1(r).

This lemma implies X satisfies condition (A).
Proof. By convexity of Ci and the fact that Ψ1(C1) and Ψ2(C2) are

tangent at p′, there exists a neighborhood O ⊂ H
n of p′ and bilipschitz

embeddings fi : Ψi(Ci)
⋂O −→ Si such that:

(1) There exists a function K(R) such that fi is K(R)-bilipschitz on
B(p,R)

⋂
Ψi(Ci), and limR→0K(R) = 1.

(2) f1 is the identity on geodesic ray Ψ1(pr)
⋂O. f2 is the identity

on geodesic ray Ψ2(pq)
⋂O.
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S1

(C  )1Ψ1

Ψ1(r)

2(C   )Ψ2

Ψ2(q)

p’
S2

Figure 2: The image of X under Ψ1 and Ψ2.

(3) The fi agree on Ψi(∂Ci) in such a way that they glue together to
form a map F from a neighborhood of p in X to H

3.

The fi are obtained by spreading out Ψi(Ci)
⋂O to fill up Si while

preserving radial distances from p′. Notice that F also satisfies (trivial
modifications of) properties (1) and (2).

Pick sequences {ri} ⊂ int(pr) and {qi} ⊂ int(pq) both converging to
p. By properties (1) and (2), the three-point metric spaces {ri, p, qi} ⊂
X and {F (ri) = Ψ1(ri), p′, F (qi) = Ψ2(qi)} ⊂ H

n are Ki-bilipschitz,
with Ki going to 1. Therefore

|∠̃qipri − ∠HnF (qi)p′F (ri)| −→ 0.

We also know that

∠HnF (qi)p′F (ri) = ∠HnΨ2(qi)p′Ψ1(ri) = ∠HnΨ2(q)p′Ψ1(r).

This implies that

∠̃qipri −→ ∠HnΨ2(q)p′Ψ1(r).

This proves the desired equality. q.e.d.
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The easiest remaining condition to verify is condition (C).

(C) The sum of adjacent angles is equal to π, i.e., if s is an interior
point of a geodesic pq then for any geodesic sr we have ∠psr+∠rsq = π.

The only nontrivial case of (C) is for a geodesic segment straddling
the boundary ∂C.

Lemma A.3. Let pq be a geodesic segment such that p ∈ C1, q ∈
C2, and s is the unique point in the intersection pq ∩∂C. Let r be a point
of X. This arrangement satisfies condition (C), i.e., ∠psr +∠rsq = π.

Proof. Without a loss of generality, we may assume r ∈ C1. Consider
the model used in Lemma A.2. Specifically, map X into H

n by Ψ1 and
Ψ2 so that Ψ1(C1) and Ψ2(C2) are tangent at the image of s. Then by
Lemma A.1, the geodesic segment pq is mapped to a geodesic segment
in H

n. Therefore,

∠HnΨ2(q)Ψ1(s)Ψ1(r) + ∠HnΨ1(r)Ψ1(s)Ψ1(p) = π.

Lemma A.2 states that

∠HnΨ2(q)Ψ1(s)Ψ1(r) = ∠qsr.

It is obvious that

∠HnΨ1(r)Ψ1(s)Ψ1(p) = ∠rsp.

Therefore,
∠qsr + ∠rsp = π.

q.e.d.

What remains is to verify condition (B) for small triangles in X.
Recall

(B) None of the angles of the triangle �pqr is less than the corre-
sponding angle of the comparison triangle in H

2, i.e., ∠rpq ≥ ∠̃rpq.
This requires the following formulation of a classical result of Alexan-

drov [7, p. 115].

Alexandrov’s Lemma. Let points a, b, c, d ∈ H
2 form a geodesic

quadrilateral as in Figure 3. Let ∆ be the geodesic triangle in H
2 with

side lengths |ab|, |bc|+ |cd|, and |ad|.
If γ+ γ′ ≤ π, then α̃ ≥ α+α′, β̃ ≤ β, β̃′ ≤ β′, and d(ã, c̃) ≤ d(a, c).

Moreover, if any of the above inequalities is an equality, then all the
others are also equalities.
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Figure 3:

Lemma A.4. A triangle �qpr where p ∈ ∂C, q ∈ int(C1), and
r ∈ int(C2) satisfies condition (B).

Proof. Pick a geodesic qr in X. Let c be the unique point where
qr intersects ∂C. Consider the triangles �pqc ∈ C1 and �prc ∈ C2.
Let Q be the (hyperbolic planar) quadrilateral formed by abstractly
gluing�pqc to�prc along the edges (unfortunately labelled by identical
notation) pc ∈ C1 and pc ∈ C2. The idea is to compare Q to the
comparison triangle �̃pqr. See Figure 4. By Lemma A.1, we know

∠rcp+ ∠qcp ≤ π.

As all side lengths are equal in Q and �̃pqr, we can apply Alexandrov’s
lemma. Therefore,

∠prc ≥ ∠̃prc and ∠pqc ≥ ∠̃pqc.

c

r

p

q

Figure 4: The comparison triangle �̃pqr and the glued-together quadri-
lateral Q.

All that remains is showing ∠rpq ≥ ∠̃rpq. (Warning, Figure 4 is
misleading in this case!) This requires comparing the comparison tri-
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angle �̃pqr to the triangle in H
n formed by Ψ1(p), Ψ1(q), and Ψ2(r)

considered in Lemma A.2. We know

∠rpq = ∠HnΨ2(r)Ψ1(p)Ψ1(q),

dHn(Ψ1(p),Ψ1(q)) = |pq|,

dHn(Ψ1(p),Ψ2(r)) = |pr|, and

dHn(Ψ1(q),Ψ2(r)) ≥ |qr|.

Therefore,

∠rpq = ∠HnΨ2(r)Ψ1(p)Ψ1(q) ≥ ∠̃rpq.

q.e.d.

Now consider a triangle in X which straddles the boundary ∂C but
has no vertices lying on ∂C.

Lemma A.5. A triangle �qpr where p ∈ int(C1), q ∈ int(C1), and
r ∈ int(C2) satisfies condition (B).

Proof. This is a disappointingly messy case. The idea is to cut �qpr
into pieces for which the previous lemmas are valid.

Let c be the unique point where qr intersects the boundary ∂C. Let
Q be the quadrilateral formed by gluing the comparison triangle �̃rcp
to �pcq along the appropriate edge. (See Figure 5.)

p q

r

c

C

C1

2

~pqr

~

p

c

q

rcp

pcq

Q

α
φ
ψ

Figure 5: A visual model for�qpr, the quadrilateral Q, and comparison
triangle �̃pqr.
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Since we could have just as easily cut along the other diagonal, by
symmetry it is enough to show that

∠prq = ∠prc ≥ ∠̃prq, and ∠rqp = ∠cqp ≥ ∠̃rqp.

Lemma A.4 can be applied to �rcp. Therefore, Lemma A.4 and
condition (C) imply

φ+ ψ = φ+ ∠pcq ≤ ∠rcp+ ∠pcq = π.

Using this we can apply Alexandrov’s lemma to conclude ∠̃prq ≤ α.
By Lemma A.4, α ≤ ∠prc = ∠prq. Therefore,

∠̃prq ≤ ∠prq.

Finally, by again using Alexandrov’s lemma we obtain

∠̃rqp ≤ ∠cqp = ∠rqp.

q.e.d.

With this, we have proven that each x ∈ ∂C has a neighborhood
satisfying conditions (A), (B), and (C) where we let Ux be simply X in
each case. (This was possible only because we reduced to the case where
C is simply connected.) This completes the proof of Theorem 5.3.
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